If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+320t+50=0
a = 16; b = 320; c = +50;
Δ = b2-4ac
Δ = 3202-4·16·50
Δ = 99200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{99200}=\sqrt{1600*62}=\sqrt{1600}*\sqrt{62}=40\sqrt{62}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-40\sqrt{62}}{2*16}=\frac{-320-40\sqrt{62}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+40\sqrt{62}}{2*16}=\frac{-320+40\sqrt{62}}{32} $
| 3^2-2(8-5)^2=36x | | 16×3x=100 | | -7-x=2(3x-6)-7x | | 6-9x=6x-10+16 | | -24/5+6/5k=4/3k-2k | | -7-x=2(3x-6) | | 3-1/4x=10 | | 21-3x=24 | | 3-1/4x=3 | | 40-5v=-5(6v+7) | | -384=-12x | | -9x-34(x+2)=-6(7x+8) | | 2-3x-3=14 | | 2(2+6x)=34+7x | | 9x+30=12 | | 2(5-4a)=-2a+8-6a | | 1/2x+3=4 | | 3-1/4x=60 | | 4x-11=141 | | 604=y=64 | | (2/3)(x-5)=(3/4)(4x-3) | | -7-34=x | | 4.8-18.3=x | | 15/15x=0 | | 1.5/6=10p | | 3/7n=13 | | -3x+33=-12 | | 12.9x+10=34=9.9x | | 9x=36;4 | | 4(2a-3)=3(S+1) | | 7x+8x-88=44-7x | | 6+3v=3(v+2) |